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Layout of Talk
• Overview of SciDAC (Scientific Discovery 

through Advanced Computing) project to provide 
atomic data for use by fusion plasma modelers
– Atomic data provision and formats
– Electron-impact excitation
– Electron-impact ionization
– Dielectronic recombination
– Other atomic physics calculations (spin-offs!)

• Recent/current atomic scattering calculations 
relevant to astrophysics

• Some planned projects of relevance
• Discussion of the current atomic data needs of 

astrophysics 
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Atomic Data Provision

• Atomic Data and Analysis 
Structure, UK consortium 
based at Strathclyde 
University, Glasgow, UK, 
and JET, Oxford, UK

• http://adas.phys.strath.ac.uk
/adas/docs/manual

• H. P. Summers, ADAS 
Users Manual (2nd Edition) 
(2003)

• Controlled Fusion Atomic 
Data Center at Oak Ridge 
National Laboratory, TN

• http://www-
cfadc.phy.ornl.gov



Scientific Utilization of Advanced 
Computing Platforms

Address fundamental problems in atomic and molecular physics
• One-center three-body break-up problem
• Two-center two-body scattering problems
• Collisions in intense external fields

Respond to current needs in controlled fusion energy
• Lithium database for DIII-D plasma transport codes
• Beryllium database for wall component studies at UCSD (PISCES)
• Heavy species database for wall erosion studies at JET

Apply computational methods to other scientific areas
• Simulations of cold Rydberg plasmas
• Time-dependent studies of Bose-Einstein condensates
• Iron spectral analysis of active galactic nuclei



Electron-Impact Ionization Data 
for modeling fusion plasmas

• Program initiated several years ago to completely 
revise electron-impact excitation and ionization data 
for lithium

• Excitation and ionization of Li, Li+, Li2+ examined
• Significant differences found between our TDCC 

calculations and experiment for neutral Li
• Three non-perturbative techniques however gave 

excellent agreement for Li – suggest experimental 
measurements need revision

• Data placed in format suitable for use by astrophysical 
(and fusion) plasma modelers

• Will be used to support plasma edge diagnostics made 
using a Li beam at the DIIID tokamak in San Diego 
(GA)



Electron-impact ionization of lithium
Li (2s)

Demonstrates importance of 
treating three-body Coulomb 
problem using         
non-perturbative methods –
large differences with 
perturbative calculations of 50 
– 100 % in ionization cross 
section

J. Colgan, M. S. Pindzola, D. 
M. Mitnik, D. C. Griffin, and I. 
Bray,    Phys. Rev. Letts. 87, 
213201 (2001)

Li (2p)



Electron-Impact Ionization Data 
for modeling plasmas  

• Program currently underway to revise electron-impact 
excitation and ionization data for beryllium

• Recently calculated electron-impact ionization of Be, Be+, 
Be2+, and Be3+. Excitation calculations well underway

• Few experimental measurements due to toxicity of beryllium
• Significant differences found between TDCC calculations and 

perturbative distorted-wave calculations for neutral Be
• Differences between non-perturbative and perturbative 

decrease as ion stage increases
• Data placed in format suitable for use by astrophysical (and 

fusion) plasma modelers – specifically for the PISCES plasma 
fusion device at UCSD which will use Be as a potential 
plasma-facing wall component



Electron-impact ionization of Be
• Red line: TDCC
• Green line: DWIS(N)
• Black line: DWIS(N-1)
• Blue circles: CCC
• Large differences near 

ionization threshold and 
cross section peak between 
the perturbative and 
nonperturbative calculations

• No experimental 
measurements with which to 
compare for either 
configuration

• J. Colgan, S. D. Loch, M. S. 
Pindzola, C. P. Ballance, and D. 
C. Griffin, Phys. Rev. A, 
submitted (2003).

Be 1s22s2

Be 1s22s2p



Electron-impact excitation of Li and Li+

•R-matrix with Pseudo States (RMPS) 
method has been used for many electron-
impact excitation cross section 
calculations:

•In these calculations use of pseudo 
states reflected the importance of 
accurately representing the coupling to 
the continuum

•Li: D. C. Griffin et al, Phys. Rev. A 64, 
032718 (2001).
•Li+: C. P. Ballance et al, J. Phys. B 36, 
235 (2003).
•C2+: D. M. Mitnik et al, J. Phys. B 36, 
717 (2003).
•C3+: D. C. Griffin et al, J. Phys. B 33, 
1013 (2000).



Electron-impact excitation of heavier ions
•Large R-matrix calculations (with no 
pseudo states) contain many levels to 
represent the low-lying bound states 
accurately
•Ne+: Griffin et al, J. Phys. B 34, 4401 
(2001).
•Ne4+: Griffin et al, J. Phys. B 33, 4389 
(2000).
•Ne5+: Mitnik et al, J. Phys. B 34, 4455 
(2001).
•Fe20+: Badnell and Griffin, J. Phys. B 34, 
681 (2001).
•Fe21+: Badnell et al, J. Phys. B 34, 5071 
(2001).
•Fe23+: Whiteford et al, J. Phys. B 35, 3729 
(2002).
•Fe24+: Whiteford et al, J. Phys. B 34, 3179 
(2002).
•Fe25+: Ballance et al, J. Phys. B 35, 1095 
(2002).



Dielectronic Recombination

•Project well underway to calculate dielectronic recombination 
rate coefficients for complete isoelectronic sequences
•Currently completed H-like through Ne-like sequence; 
•Moving onto second row of periodic table
•Theoretical approach is more accurate at high temperatures 
where recombination is more focused towards fusion plasma 
applications

•Theory & Methodology: N. R. Badnell et al, A&A, accepted (2003).
•H-like: N. R. Badnell et al, A&A, submitted, (2003).
•He-like: N. R. Badnell et al, A&A submitted, (2003).
•Li-like: J. Colgan, M. S. Pindzola, and N. R. Badnell, A&A, submitted 
(2003).
•Be-like: J. Colgan, M. S. Pindzola, A. D. Whiteford, and N. R. Badnell, 
A&A, submitted (2003).



Dielectronic Recombination of Cl13+

• Dielectronic recombination 
rate coefficients for Be-like 
Cl13+

• Comparisons of our 
theoretical calculations with 
experiment of Heidelberg 
group at the TSR

• Experimental confirmation of 
DR project results

• Trielectronic recombination 
(core excitation of two 
electrons) observed for the 
first time

• M. Schnell et al. Phys. Rev. Lett. 
88, XXXXXX (2003).



Problems for low temperature 
Dielectronic Recombination 

• Very large structure 
calculations necessary to get 
position of resonances 
correctly

• Also need to include effects of 
interference between radiative 
and dielectronic 
recombination

• Also the effect of interacting 
resonances on recombination

• Expt/theory for C3+: S. Mannervik 
et al, Phys. Rev. Lett. 81, 313 
(1998).

• Theory for F6+: D. M. Mitnik, M. S. 
Pindzola, and N. R. Badnell, Phys. 
Rev. A 59, 3592 (1999).

• Expt/theory for F6+: M. Tokman et 
al, Phys. Rev. A 66, 012703 (2002).

•a) DW calculations with no interference
•b) DW calculations with interference
•c) R-matrix calculation

F6+



Problems for high temperature 
Dielectronic Recombination

• Near Rydberg limits weakly bound states can be strongly affected
by electric and/or magnetic fields present. The plasma microfield 
and the plasma densities near threshold can also have a strong 
influence on the rates in these regions

• Calculations which take into account interacting resonances and 
DR in crossed electric and magnetic fields have been made:
– model calculation: F. Robicheaux and M. S. Pindzola, Phys. Rev. Lett. 

79, 2237 (1997).
– C3+, Si11+: F. Robicheaux, M. S. Pindzola, and D. C. Griffin, Phys. Rev. 

Lett. 80, 1402 (1998).
– C6+, F6+ expt: G. Gwinner et al, Phys. Rev. Lett. 84, 4822 (2000).
– O5+ expt/theory: S. Bohm et al, Phys. Rev. A 65, 052728 (2002).

• Currently no generalized codes exist which take into account 
crossed field effects within a detailed structure calculation

• These huge calculations will require parallelization of existing
recombination computer codes



Effective ionization rates for Li
• New data for excitation, 

ionization, and 
recombination has been 
incorporated into an 
ADAS plasma modeling 
calculation

• Also available at CFADC 
database

• Very large differences 
compared to model using 
older atomic data 

• Significant increase in the 
accuracy of the plasma 
modeling for lithium 

• S. D. Loch et al, Physica 
Scripta, submitted (2003).

Effective ionization rate for Li at 
an electron density of 1014 cm–3 as 
a function of electron temperature



Li emissivity coefficients
• Emissivity coefficients as a 

function of electron 
temperature and density

• Obtained from ADAS 
modeling calculation

• Data such as this is used in a 
wide range of fusion plasma 
edge diagnostics

• Also comparing these and 
similar plasma 
characteristics with modeling 
calculations made using Los 
Alamos set of computer 
codes

• S. D. Loch, C. Fontes et al, Phys. 
Rev. E, submitted, (2003).



Ion-Atom Collisions 
• p + H: D. R. Schultz, et al, Phys. Rev. Lett. 

76, 2882 (1996).

• p + H: J. C. Wells, et al, Phys. Rev. A 54, 593 
(1996).

• p + H: A.Kolakowska, et al, Phys. Rev. A 58, 
2872 (1998). 

• p + H: D. R. Schultz, M. R. Strayer, and J. C. 
Wells, Phys. Rev. Lett. 82, 3976 (1999).

• p + Li: M. S. Pindzola, Phys. Rev. A 60, 3764 
(1999).

• p + Li*: M. S. Pindzola, Phys. Rev. A 66, 
032716 (2002).

• α + H: M. S. Pindzola, T. Minami, and D. R. 
Schultz, Phys. Rev. A 68, XXXXXX (2003).

• Currently working on: 

• Be4+ + H:

• p + H*: in ExB fields 

Time-dependent evolution of 
electronic wave function during collision



Double photoionization of helium
•(γ,2e) He: J. Colgan, M. S. 
Pindzola, and F. Robicheaux, J. 
Phys. B 34, L457 (2001).
•(γ,2e) He: J. Colgan and M. S. 
Pindzola, Phys. Rev. A 
65,032729 (2002).
•(γ,2e) Be: J. Colgan and M. S. 
Pindzola, Phys. Rev. A 65, 
022709 (2002).
•(2γ,2e) He: J. Colgan and M. S. 
Pindzola, Phys. Rev. Lett. 88, 
173002 (2002)
•(γ,2e) He*: J. Colgan and M. S. 
Pindzola, Phys. Rev. A 67, 
012711 (2003).

Triple differential cross section at equal 
energy sharing between the ejected electrons



Mode excitation of a BEC soliton state
•D. L. Feder, M. S. Pindzola, L. A. 
Collins, B. I. Schneider, C. W. Clark, 
Phys. Rev. A 62, 053606 (2000).
•J. Denschlag et al, Science 287, 97 
(2000).
•M. S. Pindzola and F. Texier, J. Phys. 
B 36, XXX (2003).

•Currently working on BEC’s in wave-
guides in collaboration with the MIT 
group of Pritchard and Ketterle.

Density plot of a sodium condensate in a 
soliton state undergoing mode excitation



Simulations of ultra-cold plasmas

Inclusion of electron-Rydberg scattering 
and three-body recombination is necessary 
to properly simulate the expansion of an 
ultra-cold plasma

•F. Robicheaux and J. D. Hanson, 
Phys. Rev. Lett. 88, 055002 (2002).

•F. Robicheaux and J. D. Hanson, 
Phys. Plasmas 10, June (2003).



E.g.: Supernova remnants (SNR’s)
• Recent successful modeling 

of nebular spectra in Type Ia 
supernovae by including 
forbidden lines of cobalt ions

• Electron-impact excitation 
cross sections calculated 
using distorted-wave and R-
matrix calculations for 
transitions in Co 2+

• W. Liu, D. J. Jeffery, D. R. 
Schultz, P. Quinet, J. Shaw, and 
M. S. Pindzola, Ap. J 489, L141 
(1997).

• J. Shaw, M. S. Pindzola, N. R. 
Badnell, and D. C. Griffin, Phys. 
Rev. A 58, 2920 (1998).

The Crab Nebula – one of the 
earliest recorded Supernova 
explosions



E.g.: Early Universe abundances of 
4He and 7Li

• At low energies, TDCC method is 
around 50% different from DW 
calculations for excitation to all n-
manifolds for Li and He+ systems

• Current databases use (at best) 
perturbative (DW) methods for 
these transitions – these may be in 
error by almost a factor of 2

• Working with G. Ferland to 
improve quality of He and Li 
atomic data used in astrophysical 
models

• He+: M. C. Witthoeft, M. S. Pindzola, 
and J. Colgan, Phys. Rev. A 67, 032713 
(2003).

• Li: M. C. Witthoeft, J. Colgan, and M. S. 

Electron-impact excitation of
neutral Li from 2s and 2p 
to high quantum number n



E.g.: Cometary X-ray emissions
• X-rays have been observed 

from many comets and their 
origin is still unclear

• Some unified plasma models 
explain this by modified two 
stream instabilities – Kellet et 
al

• However, they may also arise 
from radiative decays from 
solar wind ions following 
charge exchange with neutral 
species in the cometary 
atmosphere – Stancil et al

• Recent comparisons of 
ionization cross sections 
between experiment and theory 
for O ions can be used by 
modelers to increase accuracy 
of model

S. D. Loch et al, Phys. Rev. A 
67, 042714 (2003).



Planned calculations
• Calculations of electron-impact ionization of ions in 

the Be-like, He-like and O-like isoelectronic sequences
• Many of these ions are directly observed by current X-

ray observatories
• Ions in these sequences currently in astrophysical 

databases have significant uncertainties
• Theoretical calculations will support experiment; once 

theory and experiment agree, data will be used to 
produce more accurate ionization rate coefficients to be 
used in ionization balance calculations by astrophysical 
modelers

• Working closely with astrophysical modelers allows a 
guide to the systems which are important and selected 
for study



Electron-Impact Ionization Data 
for modeling cosmic plasmas

• Detailed measurements are being 
planned at ORNL

• Unique facility in the U.S. as it 
measures both electron-impact 
excitation and ionization cross 
sections

• Allows measurements from 
metastable components of ion 
beams

• Major advance on previous 
measurements which could not 
give metastable component of 
ion beams - resulting in 
considerable uncertainties in the 
measurementOutline of the MIRF (Multicharged 

Ion Research Facility) at ORNL, TN



Future projects
• Recent experiment of this process 

thought to be 40% ground (1S) 
state and 60% metastable (3P)

• Configuration-average distorted-
wave calculations up to 30% 
higher than experiment

• Unclear if due to uncertainties in 
experimental determination of 
metastable fraction; new 
experimental measurements 
planned 

• New calculations planned using 
TDCC method – though significant 
theory development required

e- + C2+ → e- + C3+ + e-



Future directions – electron 
collisions with molecular ions

• Work in progress to calculate electron-impact 
excitation and ionization of light diatomic 
molecules

• Use time-dependent techniques; compare to R-
matrix calculations

• Important in interactions of cosmic rays with 
atmospheric molecules

• Also diatomic molecules and molecular ions 
detected in interstellar clouds as well as in comets

• For many molecular species of astrophysical 
interest virtually no collisional data exists 
currently



Conclusions
• Discussed range of atomic & molecular processes 

which are important in accurately modeling fusion 
and astrophysical plasmas

• A series of theoretical techniques have been 
developed and implemented by our group to try to 
address some of these atomic physics issues

• Our aim is to work closely with astrophysical 
plasma modelers in order to provide quality 
atomic data for systems of interest

• Close collaboration and good communication 
between groups will enhance progress that will be 
made!
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